
Numerical Solution 
of the Minimal Surface Equation* 

By Paul Concus 

1. Introduction. A method for the numerical solution of the two-dimensional 
nonlinear magnetostatic-field equation has been studied recently by the author [1]. 
It is based on the iterative solution, by nonlinear successive overrelaxation, of a set 
of nonlinear difference equations approximating the original quasi-linear, elliptic, 
partial differential equation. The details of the method, its relationship to other 
methods, and its effectiveness in solving a magnetostatic test problem are described 
in [1]. The purpose here is to test the method on the minimal surface equation, 
which is of the same form but is, in general, more nonlinear and difficult to solve. 
A slight change in the method is useful for this equation in order to reduce the num- 
ber of computational operations required per iteration. The numerical results ob- 
tained for the test problems are favorable. 

2. The Problem. The minimal surface equation is the Euler equation for Plateau's 
problem in restricted, or nonparametric, form, which can be stated as follows [3, 
?18.9]: Let f(x, y), a single-valued function defined on the boundary C of a simply 
connected region R in the x - y plane, represent the height of a given space curve 
r above the point (x, y) on C. Let u(x, y) represent the (single-valued) height, above 
the point (x, y) in R, of the surface of minimal area through r. Then the problem, 
in variational form, is that of finding a function u(x, y) twice continuously differen- 
tiable in R satisfying 

(1) u(x, y) = f(x, y) on C 

and minimizing the surface area 

(2) A = (1 + ux 2+ uy 2) 1/ dxdy . 

The Euler equation corresponding to Eq. (2) in vector operator notation is 

(3) V .[y(JVuJ2)Vu] = 0, 

where 

(4) -y(JVuJ2) = (1 + 1 IVuI2)-1/2 

If the differentiations in Eq. (3) are carried out and the equation multiplied by 
(1 + IVu12)3/2, one obtains the more familiar form of the minimal surface equation, 

(1 + uY2)uXX - 2uxu,uxy + (1 + uX2)uy, = 0, 
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from which the ellipticity and quasi-linearity may be directly observed. In order 
to obtain symmetric difference equations, however, it is better to work either from 
Eq. (3) or from the variational integral Eq. (2). 

The principal family of test problems considered is of the same form as that 
studied in [1]. Here it is to find the minimal surface through the curve r, 

x = 0,z = 0 

x =2,z= , 0 < y <1, 

y= 1 , z =0 

y = , z K sin (rx/2), 0 < x 2, 

for several values of K. When the symmetry about x = 1 is used, the problem re- 
duces to solving Eq. (3) in the region 0 < x < 1, 0 < y < 1 with 

u = 0 on x = 0 and y = 1 , 

(5) u = K sin (rx/2) on y = 0, 

and 

au/ax = 0 on x = 1 . 

The test problem studied in [2] of solving Eq. (3) in the region 0 < x < 1, 0 < y 
< 1 with boundary conditions 

(6) u = [cosh2 y - X2]1/2 

on the perimeter is also briefly considered. 

3. The Method. The method of [1] can be applied directly to the present prob- 
lem. As in Eq. (14) of [1], for a square mesh of width h = 1/N (N an integer), one 
is led to the following nonlinear difference equation for Eq. (3) at an interior point: 

fij = -y-(2uij - ui-l,j - ui,j-1) + y--y+i,,(2uij - ui+,j -uij-) 

(7) + ayt, 1(2uij - 
ui-,j 

- ui,j+1) + y+ +1(2uij - u+j - ui,j+1) = 0O 

(1 6 i S N - 1 1 i j N - 1); 
here -y = _y(j Vu[ 2) denotes -y for the mesh cell with center (i - 1/2, j - 1/2), 
which is evaluated by use of 

()Vul ,2j = 2h2 [(u 1 -ui_1,1)2 + (Uij -Ui,j_) 

(8) 
+ (Ui,j_1 - Ui_l,j_1)2 + (Ui_l,j_ Ui-l,j_1)] 

Eq. (7) approximates Eq. (3) locally to O(h2), and Eq. (8) approximates {Vu 2 at 
the center of the cell to 0(h2). Eq. (7) may be derived directly from either the 
variational integral, Eq. (2), or the differential equation, Eq. (3), as long as Eq. (8) 
is used to approximate IVu 2. Along the symmetry boundary, i = N, in the first 
family of test problems, one has 
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fNj = - yTY(2UNj - UN-1,j - UN,j-1) 

? -,y+1 (2UNj - UN1,j - UN,j+1) = 0 (1 ?j <N -1). 

The difference equations are solved iteratively by computing uat, the (k + 1)th 
approximation to u j, from 

k+1 k f~~3[Uk+, k+1 k kNN1 
(9) U u - w *, k+1 k+1 k ,k 

Ni] 

aii[Ukll . U i-tl,j, U ij ** , UN,N-1] 

where w is the relaxation parameter. For the test problems, the iteration is ordered 
by letting i increase through all its values for each successively larger value of j. 
Only the case in which c does not vary from mesh point to mesh point is considered. 

The finite-difference equations thus obtained have a symmetric Jacobian matrix 
that is block tridiagonal, each block of which is itself tridiagonal. Although the 
Jac6bian matrix is positive-definite, it does not, in general, have diagonal dominance 
nor does it have off-diagonal elements all of the same sign and opposite to that of 
the diagonal elements. If the differential equation, Eq. (3), were linear-that is, if 
-y were a function of x and y alone-then the above difference equations would re- 
duce to the usual five-point ones and the iterative scheme, Eq. (9), would reduce 
to point-successive overrelaxation with a coefficient matrix having property (A). 

The estimation of the optimal value of the relaxation parameter, c, is important 
in order to obtain the most rapid convergence of the iteration. For the magneto- 
static test problem [1, 4] (and also for a mildly nonlinear equation [5]), it was ob- 
served that the optimal relaxation parameter is essentially equal to its asymptot- 
ically optimal value (the limiting parameter that yields fastest convergence in a 
small neighborhood of the solution). This asymptotic parameter, furthermore, is 
essentially equal to that estimated by the formulas valid for estimating the optimal 
parameter for linear point successive overrelaxation applied to a matrix possessing 
property (A), even though the Jacobian matrix does not, in general, have this 
property. The usefulness of this feature is discussed further when the results for the 
test problems are presented. 

Another item remaining to be discussed concerns the device to speed the com- 
putations for solving the minimal surface equation. Note that Eq. (9) requires the 
evaluation of IVu12, y(I VuI2), and d-y(IVuI2)/dlVuI2 for the surrounding mesh cells 
each time a value of u is changed at a mesh point. The repeated calculation of -y 
from Eq. (4) is undesirable, because it involves the time-consuming operation of 
extracting a square root. If, however, the previously calculated value of eY is avail- 
able, then one can save time by instead performing only one Newton iteration, 

(10) -Yn+, = 1/2[-y + (1 + lVuIn+1)/7y], 

to approximate the new value, -yn+1, by use of the old value, -Y and the newly cal- 
culated I VuI2+. The error introduced by using Eq. (10) instead of Eq. (4) is in 
keeping with the other local truncation errors of the method. The derivative can, 
of course, be computed from ey and I1Vul2 by use of the relationship 

(11) d-y(IVuI2)/d!VuI2 = -ay/[2(l + 1VU12)]. 
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4. Test Results. 
4.1. Condition number. Before discussing the numerical results, it is helpful to 

introduce a quantity with which to compare the degrees of nonlinearity for the 
different values of K in the first family of test problems. Such a quantity is the 
condition number of the coefficient matrix for Eq. (3), 

( y + 2-y'ux2 2,y'uXu 

2,y'uxuy -y + 2,y'uy2 

For a given ux, uy, x, and y, it has eigenvalues -y and 'y + 2(uX2 + Uy2)y', the product 
of which must be positive for the problem to be elliptic. For the magnetostatic test 
problem of [1] with 'y = (10-4 + IVU12)/(1 + 1IVU12), both eigenvalues are uniformly 
greater than or equal to 10-4 for all IVu12. For the minimal-surface equation, the 

K-0 ~~~~~~~~~K= 1/2 

y y 

II' ~ ~ ~ ~ ~ Z 

(0,0) x (0,0)x 

(1,1) ( 11) 

y y 

(0,0) x (0,0) x 

FUIGUR 140. 

FIGURE 1. Test problems solutions. Contour lines are drawn every K110. 
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eigenvalues are not uniformly bounded away from zero, but are merely greater than 
or equal to (1 + VUI12 )-312, where IVu12 is the least upper bound for IVuI2. 

Define the condition number to be the least upper bound of the ratio of the 
larger to the smaller eigenvalue of the coefficient matrix, when u is the solution of 
the test problem. For a linear problem, this number is 1. For the magnetostatic 
test problem, this number could be at most 2. For the Plateau test problem, it is 
(1 + I V7U12 ) and, hence, can be made as large as desired by choosing appropriate 
boundary values for u. In general, as K becomes larger, the test problem is more 
nonlinear, the condition number and spectral radius of the asymptotic iteration 
matrix are larger, and the convergence rate is slower. 

4.2. Results for first problem. The results for the first family of test problems 
Eq. (5), are given in Figs. 1 and 2 and Tables I, II, and III. Three values of K are 
used-1/2, 1, and 5-which correspond to increasing degrees of nonlinearity. The 
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mu B 10579 A 

FIGURE 2. Iteration-by-iteration behavior of Un- nI for K = 1, h 1/10, and the 
harmonic initial approximation. 
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effect on the solution of increasing K is depicted in Fig. 1. The contour lines are 
drawn at intervals of K/10, and, in each case, the maximum height, K, occurs in 
the lower right corner. The surface in the upper left is the limiting solution for the 
case in which K << 1, 

(12) u = K 
sin (7rx/2) sinh r(1 - y)/2 (12) u = K 

~~~~~sinh (7r/2) 

which is the solution of Laplace's equation for the given boundary conditions. The 
other three surfaces are those obtained numerically for a mesh with h = 1/40. The 
K = 1/2 and 1 cases are of the degree of nonlinearity one finds in most magneto- 
static problems. The K = 5 case is more nonlinear; the mesh size used yields a 
sizeable truncation error for it, and the depicted solution of the finite-difference 
equations is not necessarily a precise representation of the actual minimal surface. 
The discontinuous slopes of the contour lines for this case result from the piecewise 
linear interpolation of the contour-plotting program. Gaps in the contour lines are 
due to the occasional skipping of the pen in the automatic plotting mechanism. 

In the numerical tests, three initial approximations are used for the unknown 
values of u (all initial approximates satisfy the boundary conditions). They are 
u = 0, u = K, and the harmonic function, Eq. (12). A few comparisons were made 
between calculating -y from Eq. (4), by use of the machine square-root subroutine 
(on the IBM 7044), and calculating -y approximately from Eq. (10). The com- 
parison problems took the same number of iterations to converge, but in the latter 
case required 22%o less computer time. Consequently, all test problems reported 
here use Eq. (10) to calculate -y, and no other attempt was made to use the exact 
formula, Eq. (4). Most of the test problems were run by using a Chippewa FOR- 
TRAN IV Program on the CDC 6600 Computer, and some were run by using the 
same program, but in FORTRAN IV, on the IBM 7044. The typical time required 
was about 0.00028 second per point per iteration [one computation of Eq. (9), 
using Eqs. (10) and (11), including the necessary peripheral manipulations] on the 
6600. 

Table I gives the general numerical results and information concerning the 
optimal convergence. All quantities are accurate at least to one place in the last 
digit given. The column for K -*> 0 lists the limiting theoretical quantities for small 
K. The other columns list the observed quantities obtained from the test problems. 
The condition number, area (of the half-problem of the unit square), and angle be- 
tween the minimal surface and the vertical plane at x = 1, y = 0 are obtained by 
extrapolation to h = 0 from the solutions for the different values of h. The initial 
approximation used for each value of K is that one of the three considered that is 
closest to the solution. 

For each of the three mesh sizes, the first row gives the minimal number of 
iterations required to reduce the relative error I 

jUn-Un-lU 1/l fun' 1, in the Euclidean 
norm, to less than 5 X 10-7. The minimal number of iterations is achieved for the 
relaxation parameter, Wopt given in the second row. The values of Wopt were de- 
termined empirically to the nearest 0.01. The quantities Wb given in the third row 
are the optimal relaxation parameters (to the nearest 0.01) that one would obtain 
by using the formula applicable to point-successive overrelaxation for linear prob- 
lems with a coefficient matrix having property (A) [3, ?22.1], 
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COb 2/[1 + (1 - X2)112] 

where 

X = (n + C - l)/ICOl"2 

The spectral radius n is estimated by taking the ratio I jun - un-lI 1/1I un- - un-2 II, 
once the ratio asymptotically becomes reasonably constant for an Co slightly less 
than wot. The important observation to make is that the value of Cob thus estimated 
is essentially the same as the empirically observed value of oopt, even though the 
Jacobian matrix does not have property (A). Also, it should be noted that for the 
same mesh spacing the values of Cob and -q increase as K increases and as the prob- 
lem becomes more nonlinear. 

The observation that the empirically best Co0pt for fastest global convergence is 
essentially the same as the asymptotic value of Cob allows one to closely estimate 
Coopt, as the iteration progresses, in the same way as he would for a linear problem 
possessing property (A). This procedure was utilized successfully by Winslow in 
solving the magnetostatic equation with a triangular mesh [4]. Another relation- 
ship that may be profitably used is the one for small h, 

Cob 2/(1+ah) (h<<1). 

This equation was utilized in the test problems to estimate cob for a smaller value 
of h from the value of a that was obtained for the same problem with a larger 
value of h. 

Table II shows the results of running the test problem with K = 1, h = 1/10, 
and the harmonic initial approximation for a range of values of Co. These illustrate 
that the value of Cb one would estimate does not change greatly for the different 
values of co < Cob. Of course, if the Jacobian matrix had property (A), then the 
estimates should all be the same. The qualitative behavior is similar to that of a 
linear problem possessing property (A). That is, the dominant eigenvalue, 7, of the 
iteration matrix is real and decreases with co for co between 0 and approximately 
Ob, rather sharply near Cob. This dominant eigenvalue becomes complex for larger 
values of C, and the convergence rate decreases less steeply with Co as co increases 
from its optimal value than when it decreases from it. This behavior is depicted in 
Fig. 2, where the iteration-by-iteration behavior for the test problems with co = 
1.5, 1.65 (optimal), and 1.8 described in Table II are shown. The square of 

I -Un-I I is plotted on a logarithmic scale vs the number of iterations. 
In Table III, the maximal values of co for which the iteration is convergent for 

the different initial approximations for h = 1/10 and for K = 1 and 5 are given. 
Schechter has shown that to insure convergence for any initial guess, one should 
not allow C to be too large [6]. For example, his results yield that the iteration can 
be guaranteed to converge for this problem if one chooses co less than approximately 
twice the reciprocal of the condition number, which, for most of the test problems, 
would be a number considerably less than unity (see Table I). However, from Table 
III, one sees that for the considered initial approximations, although it is necessary 
to use a value of C less than the optimal to obtain convergence for the poorer ap- 
proximations, it is possible to use a much larger value of co than that required in 
[6]. Since the convergence rate is considerably lowered by using too small an co, it 
would seem best to proceed as follows for reasonable first approximations: Initially, 
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TABLE I. Comnparison of first test problems 

K -*--0 1/2 1 5 
condition nio. 1 2.0 14 > 104 
A (half area) 1 1.099 1.332 3.801 
Angle with vertical 

at (1,0) (90-98.13K)0 440 160 <0.20 
initial approx. harmonic harmonic 0 

(iterations to coniverge 26 36 54 
h = 1/10 coopt 1.63 1.65 1.72 
90 pts. (CLb 1.606 1.62 1.65 1.72 

(iterations to converge 49 65 105 
h= 1/20 coopt 1.80 1.81 1.84 
380 pts. (UCb 1.780 1.79 1.81 1.84 

(iterations to converge 101 126 242* 
h 1/40 qc opt 1.89 1.90 1.92 
1560 pts. COb 1.883 1.89 1.90 1.92 

* First 20 iterations at co = 1.8, and next 20 at co 1.9 to prevent divergence. 

TABLE II. Iteration behavior as a function of 
cwfor K = 1, h = 1/10, and the harmonic initial approximation 

iterations 
wo t to converge vOb 

1.0 227 0.959143 1.6637 
1.2 156 0.938429 1.6634 
1.4 101 0.901931 1.6627 
1.5 78 0.869023 1.6616 
1.6 63 0.80318 1.6584 
1.63 45 0.758 1.655 
1.65 36 * (optimal) 
1.67 37 * 
1.7 40 * 
1.8 58 * 
1.9 124 * 

* Oscillatory 

TABLE III. Maximal w for which iteration will converge for h = 1/10 

K - opt from Table I initial approx. Wmax 

harmonic 1.97 
1 1.65 0 1.S3 

1 1.60 

harmonic 1.63 
5 1.72 0 1.85 

5 1.44 
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try to use a value of X equal to the estimated copt. If the iteration then diverges, 
slightly smaller values of c should be tried until one is found for which the iteration 
does not diverge. Then co should be increased toward the optimal as the approxima- 
tion to the solution improves. Such was the procedure for the h = 1/40, K = 5 
example in Table I. 

4.3. Results for second problem. Tables IV and V compare the discretization error 
obtained by the present method in solving the second test problem, Eq. (6), with 
that obtained by Greenspan with his lower-order, one-sided differencing scheme 
[2]. The problem has the exact solution UE = (cosh2 y - X2)1"2. An initial approxi- 
mation was obtained by linear interpolation of the boundary values, as it was in [2] 
The specific interpolation used here is 

u(x,y) = u(x,0) + y[u(x,) - u(x,0)], (0 < x < 1, 0 < y < 1). 

For h = 1/40 and co = 1.87, the present method requires 106 iterations to converge 
to I jU- un-ll1/1IUnhI < 5 X 10-7 and 162 iterations to < 10-; for h = 1/50 and 
X = 1.89, 127 and 192 iterations. The ordering of the iterations and computer time 
required are the same as for the first test problem. The actual optimal values of co 
were not determined, but, from the asymptotic convergence rate, the values used 

TABLE IV 
Comparison of discretization errors with those of Greenspan; 

h = 1/40 

U 

Reference [2] 
y x This method Table IV UE 

0.00 0.95 0.31224990 0.31224990 0.31224990 
0.05 0.65 0.76157878 0.76097338 0.76157868 
0.10 0.30 0.95918333 0.95901362 0.95918370 
0.10 0.80 0.60832683 0.60584338 0.60830369 
0.15 0.55 0.84863211 0.84775599 0.84862787 
0.20 0.40 0.93837174 0.93792401 0.93836890 
0.20 0.95 0.37240933 0.36438793 0.37153221 
0.25 0.20 1.01183731 1.01175927 1.01183644 
0.30 0.70 0.77640646 0.77433730 0.77635856 
0.40 0.55 0.93073514 0.92996610 0.93070805 
0.45 0.95 0.56063992 0.55867880 0.56039557 
0.50 0.35 1.07194587 1.07201608 1.07193298 
0.65 0.65 1.03104877 1.03106640 1.03099812 
0.70 0.85 0.92363372 0.92351784 0.92355251 
0.75 0.15 1.28596932 1.28630885 1.28596454 
0.75 0.50 1.19426367 1.19475354 1.19423817 
0.80 0.20 1.32240243 1.32280683 1.32239640 
0.85 0.45 1.30831865 1.30883314 1.30830338 
0.85 0.95 1.00584466 1.00600982 1.00581197 
0.90 0.30 1.40133993 1.40171238 1.40133386 
0.90 0.70 1.25052009 1.25094661 1.25049454 
0.95 0.00 1.48538456 1.48545280 1.48538405 
0.95 0.65 1.33656165 1.33683577 1.33654995 
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TABLE V 

Comparison of discretization errors with those of Greenspan; 
h = 1/50 

U 

Reference [2] 
y x This method Table V UE 

0.00 0.96 0.28000000 0.28000000 0.28000000 
0.04 0.66 0.75233010 0.75213765 0.75233028 
0.10 0.30 0.95918346 0.95912198 0.95918370 
0.10 0.80 0.60831775 0.60740805 0.60830369 
0.16 0.56 0.84393414 0.84357683 0.84393080 
0.20 0.40 0.93837067 0.93820524 0.93836890 
0.20 0.94 0.39659419 0.39344046 0.39615172 
0.24 0.20 1.00931433 1.00928742 1.00931385 
0.30 0.70 0.77638884 0.77558328 0.77635856 
0.40 0.56 0.92474375 0.92442376 0.92472562 
0.44 0.96 0.53384849 0.53294933 0.53368591 
0.50 0.36 1.06862472 1.06864723 1.06861608 
0.66 0.66 1.03300908 1.03299358 1.03297588 
0.70 0.84 0.93270829 0.93260872 0.93265708 
0.74 0.14 1.27888747 1.27901338 1.27888461 
0.74 0.50 1.18540510 1.18557830 1.18538848 
0.80 0.20 1.32240025 1.32255781 1.32239640 
0.84 0.94 1.00221326 1.00225312 1.00218885 
0.86 0.46 1.31503763 1.31522812 1.31502800 
0.90 0.30 1.40133772 1.40148232 1.40133386 
0.90 0.70 1.25051094 1.25066097 1.25049454 
0.94 0.64 1.32926546 1.32938045 1.32925684 
0.96 0.06 1.49609247 1.49611899 1.49609203 

were estimated to be within, at most, about 1% of the optimal. The discretization 
errors were IIul62 - UEI/IIUEH = 1.634 X 10-4 for h = 1/40; IIu'l2 - UEII/H UEI 
- 1.244 X 10-4 for h = 1/50. 

For h = 1/40 and cw = 1.24, 375 iterations were required in Example 10 of [2] 
for the same problem to converge (the exact convergence criterion was not given); 
for h = 1/50 and cw = 1.6, divergence occurred [2, Example 13]. The time required 
per point per iteration there was about 0.001 sec on the CDC 1604. Although a 
precise comparison is not possible because of the difficulty of comparing different 
programs on different computers, the higher-order differencing scheme used here 
apparently may, in addition to lowering the discretization error, have improved the 
convergence. 

5. Summary. The promising results obtained for the test problems suggest that 
the method discussed here is a useful one for solving the minimal surface equation. In 
general terms, the important points are (1) setting up the difference equations in the 
manner suggested, using the central approximation for IVu12, and (2) solving these 
equations by using nonlinear successive overrelaxation, estimating the optimal re- 
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laxation parameter by use of the formulas valid for linear problems with coefficient 
matrices possessing property (A). If the iteration diverges, then a smaller relaxation 
parameter should be used initially and adjusted towards the optimal, after first 
allowing the iteration to proceed a number of steps. 
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